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The industry standard method used to validate finite element models involves

correlation of test and analysis mode shapes using reduced Test-Analysis Models

(TAMs). Some organizations even require this model validation approach. Considerable

effort is required to choose sensor locations and to create a suitable TAM so that the test

uses a probabilistic framework to understand and quantify the effect of small errors in

the test mode shapes on test-analysis orthogonality. Using the proposed framework,

test-orthogonality is a probabilistic metric and the problem becomes one of choosing

sensor placement and TAM generation techniques that assure that the orthogonality has

a high probability of being within an acceptable range if the model is correct, even

though the test measurements are contaminated with random errors. A simple

analytical metric is derived that is shown to give a good estimate of the sensitivity of

a TAM to errors in the test mode shapes for a certain noise model. These ideas are then

applied to a generic satellite system, using TAMs generated by the Static, Modal and

Improved Reduced System (IRS) reduction methods. Experimental errors are simulated

for a set of mode shapes and Monte Carlo simulation is used to estimate the probability

that the orthogonality metric exceeds a threshold due to experimental error alone. For

the satellite system considered here, the orthogonality calculation is highly sensitive to

experimental errors, so a set of noisy mode shapes has a small probability of passing the

orthogonality criteria for some of the TAMs. A number of sensor placement techniques

are used in this study, and the comparison reveals that, for this system, the Modal TAM

is twice as sensitive to errors on the test mode shapes when it is created on a sensor set

optimized for the Static TAM rather than one that was optimized specifically for the

Modal TAM. These findings are evaluated in light of previously published studies of TAM

sensitivity, and special attention is given to Gordis’s theory, which suggest that TAM

sensitivity is related to the natural frequencies of the structure when all measurement

points are fixed. Some aspects of TAM sensitivity are problem dependent, so this one

work cannot achieve a conclusive ranking of all of the available methodologies. Instead,

this work focuses on presenting a set of tools and a probabilistic framework that can be

used to correctly quantify TAM sensitivity and demonstrating the approach for one

dynamic system and for a particular probabilistic model for the errors contaminating

the test mode shapes.
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1. Introduction

Finite element models have been used successfully for many years to predict the response of aerospace structures to
their environmental loads. In order to ensure that critical predictions are accurate, each finite element model (FEM) must
be experimentally validated, typically by comparing FEM modal parameters with those extracted from modal tests. This
process has been called test/analysis correlation. Frequencies are compared directly, while the agreement between the
mode shapes is most often evaluated by quantifying the orthogonality and cross-orthogonality of the modes. One can
never measure at each node of the FEM, so a reduced representation, called a test-analysis model (TAM) is generated and
the orthogonality of the modes is computed with respect to the TAM mass matrix [1]. Past experience has revealed that
orthogonality is a good indicator of a valid FEM model, one which can be used confidently in coupled-loads analysis [2].
The use of these metrics, and the required values for test/analysis correlation, are dictated by agencies such as NASA [3]
and the United States Air Force [1]. For example, the US Air Force requires test/analysis frequency errors less than or equal
to 3.0%, cross-generalized mass values greater than 0.95, and coupling terms between modes of less than 0.10 in test-
orthogonality and test-FEM cross-orthogonality (see [1], Sec. 5.12.3.10).

Many model reduction techniques have been developed, but the one that has been used the longest, and perhaps
trusted the most, is the static or Guyan reduction [4]. However, there are cases where it does not provide accurate
representations of the FEM, such as solid rocket motor applications [5]. Furthermore, it is sometimes very difficult to find a
sensor set that is small enough to be practical, yet that still results in a good static TAM. This provided incentive for the
development of a series of advanced TAM techniques, using Modal [6], Hybrid [7] and SEREP [8] reductions, which exactly
predict the target modes, and the IRS TAM [9], which improves on the static TAM by approximating the inertia terms that
are neglected in the static reduction.

While it is accepted that these advanced reduction techniques more accurately predict the FEM modal parameters and
greatly improve orthogonality when the test mode shapes are equal to the FEM mode shapes, some works have found them
to be more sensitive to FEM/test errors than Guyan reduction. Sensitivity produces larger off-diagonal terms in the
orthogonality computations, and this sensitivity is thought to be a fault of the TAM rather than a meaningful indication of
mismatch between the test results and the FEM. This is undesirable, not only from the analyst’s point of view, but also from
the test engineer’s perspective, where the success of the test is based on minimizing the size of these terms. A few works
have investigated TAM sensitivity using both simulated and actual experimental mode shapes. Chung [10] compared the
Static, IRS, Modal, and Hybrid TAMs for three different systems, using real modal test data with the sensor locations
optimized for the static reduction. He concluded that overall, the Static TAM performed the best, but the differences
between the cross orthogonality terms for all of the methods were small for all three of the systems that he considered.
Freed and Flanigan [11] investigated the same four TAMs for two different systems. The first system used simulated test
data based on a modified FEM representation of a simple spacecraft. They placed sensors based on ‘‘kinetic energy and
mode shape observability’’ [11] and found that the Hybrid and Modal TAM representations were the most sensitive to
errors. Their second example employed real test data from the Titan dual payload, where the Hybrid TAM was observed to
be the most robust, followed by the Static, IRS and then Modal TAMs. Avitable et. al. [12] compared Static, IRS, MAC [13],
SEREP, and Hybrid TAM approaches. They used both simulated and real test data for a 2-bay truss. In the case of simulated
experimental data, they found that the SEREP and Hybrid TAMs produced better orthogonality results than the Static TAM
for large sensor sets, and significantly better results for reduced sets. For real test data, SEREP, Hybrid, and Static TAMs gave
similar orthogonality results for large sensor sets, but the Static TAM was significantly worse for small sensor sets.
Matsumura [14] compared the Static TAM with XORviaGDOP , which can be viewed as an extension to SEREP, observing
that the latter was slightly more sensitive than the Static TAM, although the comparison was not pursued in detail.

All of the studies just cited used the same sensor set for each TAM, a sensor set that was usually chosen for the Static
TAM, but each reduction procedure demands its own optimally placed sensor set. The Modal TAM requires that the target
modes partitioned to the sensor set are as linearly independent as possible, as can be obtained using Effective
Independence (EfI) [15] to place the sensors. The static reduction requires that the target modes be independent in a mass
weighted sense. The studies just cited might have obtained artificially high sensitivity for the Modal TAM if the sensor set
they employed was optimized for a different TAM. This work explores this issue using state of the art sensor placement
techniques for each TAM, and also by comparing the performance of the Static and Modal TAMs on various sensor sets.

The most significant limitation of the previous works is that they employed a deterministic approach, computing the
orthogonality of the test modes with respect to the TAM once, for a single set of test data, but the test mode shapes can be
expected to vary significantly if the measurements are repeated so they should be modeled as random variables. In many
of the studies cited previously, differences between the TAMs were small, so it was difficult to tell whether the differences
were statistically significant. The key contribution of this work is that it uses a probabilistic framework to explore the
question of TAM sensitivity to test errors, allowing one to quantify the sensitivity of each TAM in a meaningful way. Only
one other work has taken a probabilistic view [14], but it was limited to the cross-orthogonality, a particular Gaussian
noise model, and was focused on the XORviaGDOP TAM [14]. This work presents a procedure whereby the performance of
the TAMs can be quantified probabilistically using Monte Carlo simulation. The problem is also treated analytically,
resulting in a metric that can be used to estimate the sensitivity of the test-orthogonality to mode shape errors. Using a
probabilistic approach, this work demonstrates that when sensitivity to errors is important, passing or failing the
orthogonality criteria may be purely a matter of random chance. Failure to recognize this could cause significant
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frustration for both experimentalists and analysts. If the experimentalists find that their initial test modes do not satisfy
test-orthogonality, they are likely to invest extra time and effort in the test, perhaps adjusting boundary conditions,
modifying modal parameter identification, checking sensor orientations, etc... This adds to the cost of the test, but would
add little value if the initial test modes failed test-orthogonality only because of small, inevitable errors. Likewise, if an
analyst encounters a model that has failed to meet validation criteria due to an overly sensitive TAM, they may:
�
 reject an FE model that is accurate to within the resolution of the test measurements,

�
 needlessly update an FEM model to recreate the random noise pattern observed in a particular test,

�
 make numerous perturbations to the TAM procedure, sensor set, or FEM model in an effort to pass the validation

criteria, achieving little more than a random set of perturbations that passes the orthogonality metric for a given set of
noise contaminated mode shapes and

�
 falsely conclude that an inadequate model is valid because it correlates well with a particular test.

It is important to quantify the effect of measurement errors on test-orthogonality so that these scenarios can be avoided.
The probabilistic framework proposed here is demonstrated by applying it to simulated measurements from a satellite

system. A set of FEM target modes are corrupted with uniform random errors to simulate measurement errors, then the
orthogonality of the noisy modes is computed with respect to four different TAMs, each of which was created with its own
optimal sensor set. A Monte Carlo simulation is used to estimate the probability distributions for the average and
maximum off-diagonal terms in the orthogonality. Both the examples and theoretical development presented here
presume that the FEM is an accurate representation of the test hardware, so any mismatch between the FEM and test mode
shapes is attributed to test errors. One would hope that the TAMs would indicate that the model is correlated in this
situation, but the example shows that the probability of failing to meet test-orthogonality criteria may be high, even if the
FEM is accurate and the errors in the test mode shapes are relatively small. Because of space limitations, only this one
satellite system is considered, so the question of which TAM is best cannot be conclusively answered. However, the
framework presented here can be used to understand the issues involved with TAM sensitivity and test/FEM correlation
and to develop remedies.

This paper is organized as follows. Section 2 summarizes existing methods and derives a metric to quantify TAM
sensitivity using the probabilistic framework. The specific TAM generation and sensor placement methods that are
used here are reviewed in Appendix A, as well as a new TAM generation method, the Inverse TAM, which is presented in
Section A.1.4 and a new sensor placement method, the Condition number algorithm, which is presented in Section A.2.3.
Section 3 describes the satellite model studied here and the pre-test correlation based on the perfect FEM model. Section 4
presents the mode shape error model and the results of the Monte Carlo simulation for each TAM method, and compares
the results with the analytical predictions. Conclusions are presented in Section 5.

2. Theoretical development

2.1. Background

Because the test mode shapes can never be measured at all of the nodes in a finite element model, one must either
expand the test mode shapes to the FEM nodes or reduce the FEM to the test nodes before orthogonality can be computed.
The latter approach is the focus of this work. The reduced FEM model is called a Test-Analysis Model (TAM). Using this
paradigm, model correlation involves at least two stages. In the first stage a set of target modes is identified, a TAM model
is created and a series of metrics are used to determine how well the TAM represents the FEM model. We shall denote the
FEM target mode shapes partitioned to the sensor degrees of freedom as uFEM, the reduced mass matrix ~MTAM, and the
target mode shapes calculated using the reduced mass and stiffness matrices uTAM. The metrics used to measure TAM/FEM
correlation are orthogonality,

O¼uT
FEM

~MTAMuFEM (1)

cross orthogonality,

CO¼uT
FEM

~MTAMuTAM (2)

and comparison of the TAM and FEM natural frequencies

ferror ¼
fFEM�fTAM

fFEM
� 100 (3)

Once an acceptable TAM has been created, one may proceed to test-analysis model correlation and then to updating. The
TAM mass matrix is used to compute the orthogonality using Eqs. (1) and (2), only now between the test, utest, and FEM,
uFEM, mode shapes. In all of the following, the term ‘‘orthogonality’’ and the symbols O and CO will be used to describe
both TAM/FEM and Test/FEM orthogonality, as is typically done in the literature; it is clear from the context whether the
TAM and FEM or the Test and FEM are being compared. Note that damping is not considered in traditional model
correlation methods, so real mode vectors must be estimated from the test; this could be a concern if the structure in
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question is very heavily damped or if one is concerned with high-fidelity modeling of damping, but these issues will not be
considered here.

Most test-analysis models can be derived from the eigenvalue problem for the ith mode shape and frequency,
partitioned into two sets of degrees of freedom. The degrees of freedom that will be retained are called the ‘‘a-set’’ and
hence the corresponding matrices have a subscript of ‘‘a’’, while the omitted degrees of freedom are denoted as the ‘‘o-set’’
(subscript ‘‘o’’). The partitioned eigenvalue problem can be written as follows:

�o2
i

Maa Mao

Moa Moo

" #
uai

uoi

( )
þ

Kaa Kao

Koa Koo

" #
uai

uoi

( )
¼ 0 (4)

One can obtain the well-known dynamic reduction equation by extracting the lower partition and solving for at the o-set
degrees of freedom from the a-set motion resulting in the following:

uoi ¼�ðKoo�o2
i MooÞ

�1
ðKoa�o2

i MoaÞuai (5)

Dynamic reduction is theoretically exact, but the solution for the o-set is dependent on the frequency of the mode under
consideration, so a reduced model obtained from dynamic reduction would have frequency dependent mass and stiffness
matrices. To avoid this undesirable result, a number of alternatives have been proposed, four of which are utilized in this
work: the static or Guyan TAM [4], the Improved Reduced System (IRS) TAM [9], the Modal TAM [5,6], and a new modal
TAM named the Inverse TAM. The existing TAMs are reviewed in the Appendix in Sections A.1.1–A.1.3. The new Inverse
TAM is presented in Section A.1.4.

Gordis [16] noted that one can think of these TAMs as an approximation to the dynamic reduction equation above,
which depends on inverting the matrix

ðKoo�o2
i MooÞ (6)

This matrix is ill-conditioned when o2
i is near any of the eigenvalues of the Koo, Moo system. The natural frequencies of the

Koo, Moo system are the natural frequencies that the system would have if it were were anchored at its a-set degrees of
freedom. If those frequencies are near the natural frequencies of the actual system, then the dynamic reduction equation
will be ill-conditioned. Physically, this means that the structure can have low frequency motion that is not observable on
the a-set degrees of freedom, so the o-set motion cannot be determined from the a-set responses alone. Gordis noted this
fact and suggested that the IRS TAM might greatly magnify errors in the test mode shapes if this is the case because the IRS
TAM approximates the dynamic reduction equation. He suggested that one can test for sensitivity by computing the
eigenvalues of the system with the a-set DOF restrained and see if the resulting frequencies are close to the frequencies
of the actual system. Both Gordis [16], and Blelloch and Vold [17] seem to have extrapolated this theory to apply to any
TAM that approximates the inertia terms, such as the Modal TAM. These ideas will be evaluated for a satellite system in
Sections 3 and 4.

The accuracy of a test-analysis model clearly depends on which sensors are retained (the a-set); some sensor
placement techniques have even been derived to be optimal for a certain TAM. Two existing sensor placement techniques,
the Effective Independence (EfI) and modal kinetic energy techniques, are reviewed in the Appendix in Sections A.2.1 and
A.2.2 respectively. A new sensor placement technique, dubbed the Condition number (C#) technique is presented in
Section A.2.3.

2.2. Analytical evaluation of the effect of mode shape errors on test-analysis orthogonality

The same orthogonality equations are applied regardless of which TAM mass matrix and sensor locations are employed,
so the following analysis applies to any of the methods just mentioned. Assuming that additive noise contaminates the test
mode shapes, the test orthogonality of the i, jth term can be rewritten as follows where ui denotes the true test mode
shape and ni denotes errors that contaminate the ith mode shape.

Oij ¼ ðuiþniÞ
T ~MðujþnjÞ (7)

Oij is the i, jth entry of the orthogonality matrix and ~M is the TAM mass matrix. This expression can be expanded into the
following

Oij ¼uT
i
~MujþuT

i
~MnjþnT

i
~MujþnT

i
~Mnj: (8)

Taking the expected value of Eq. (8), we can surmise that the mean of the orthogonality is equal to the true
orthogonality (1st term) so long as:
�
 the error vectors ni and nj are zero mean (causing the expected values of the 2nd and 3rd terms to vanish) and

�
 each random variable in ni is independent of each variable in nj (causing the 4th term to vanish).
One way of interpreting Eq. (8) is to consider the 2nd and 3rd terms as random variables that are formed from linear
combinations of the random variables comprising the noise vectors ni and nj. Hence, if the noise on each random variable is
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independent and identically distributed, then by the central limit theorem, the distribution of their sum becomes Gaussian
as the number of sensor locations approaches infinity. The same is true for the 4th term, revealing that the noise on the
orthogonality estimate is Gaussian under these circumstances. A Gaussian random variable is described completely by its
mean and standard deviation [18]. The number of sensors is never really infinite in a real test, but this approximation can
be quite accurate even with tens of sensors, and it is not uncommon for a modal test to employ a few hundred sensors in
which case the approximation can be quite good.

The standard deviation sOij of the i, jth term in the orthogonality matrix can be computed by subtracting the mean
orthogonality mij from Oij, squaring the quantity and then finding its expected value.

s2
Oij ¼ EððOij�mijÞ

2
Þ (9)

Under the assumptions stated above, the mean orthogonality is equal to the true orthogonality, so the first term in Eq. (8)
cancels with mij and there are only three terms to be squared. Each term is a scalar so six unique terms result and the
expression becomes the following:

s2
Oij ¼ E½ðuT

i
~MnjÞ

2
þðnT

i
~MujÞ

2
þðnT

i
~MnjÞ

2
þ2ðuT

i
~MnjÞðn

T
i
~MujÞþ2ðuT

i
~MnjÞðn

T
i
~MnjÞþ2ðnT

i
~MnjÞðn

T
i
~MujÞ� (10)

These terms simplify substantially if the noise is assumed to be uncorrelated and zero mean as was done above for the
mean orthogonality. For example, the third term can be written as,

E½ðnT
i
~MnjÞ

2
� ¼ E½

X
m

X
n

nminnj
~Mmn

X
r

X
s

nrinsj
~Mrs�; (11)

where ( )m denotes the mth row of ( ) and ( )mn denotes the element at the mth row and nth column. Taking the summations
to the outside and noting that, when the noise is uncorrelated and zero mean, the expectation of each term vanishes except
for those for which r=m and s=n, one obtains

E½
X

m

X
n

n2
min

2
nj
~M

2

mn� ¼
X

m

X
n

s2
noise;mis

2
noise;nj

~M
2

mn (12)

where snoise,mj is the standard deviation of the noise for the jth mode and the mth sensor. The first and second terms can
also be written in terms of the respective standard deviations. The situation is different for the fourth through sixth terms.
For example, the fourth term can be written as,

E½2ðuT
i
~MnjÞðn

T
i
~MujÞ� ¼ Eð

X
m

X
n

X
r

X
s

fmi
~Mmnnnjnri

~MrsfsjÞ (13)

which reveals that this term vanishes if nri and nnj are uncorrelated. The fifth and sixth terms likewise vanish, so one finally
obtains the following expression for the standard deviation of the i, jth term of the test orthogonality matrix in terms of the
standard deviation of the noise in each mode and at each sensor,

sOij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
m

ð ~MuiÞ
2
ms2

noise;miþ
X

m

ð ~MujÞ
2
ms2

noise;mjþ
X

m

X
n

~M
2

mns2
noise;mis

2
noise;nj:

s
(14)

All of the terms are squared, so this reveals that TAMs which produce a TAM mass matrix with large elements, or large
elements in ~Mui will be most sensitive to noise. The expression can be easily implemented into a simple computational
routine to compute the sensitivity of a TAM from its mass matrix and the target mode shapes. One should bear in mind that
this equation was derived for a case where the noise contaminating the mode shapes is additive, zero mean and
uncorrelated. Similar expressions could be derived for other noise models, such as multiplicative noise or correlated noise,
but more complicated noise models quickly lead to a much more complicated expression, so the exercise might not
produce much additional insight.

3. Pre-test correlation

3.1. Overview of satellite model

The proposed probabilistic framework was evaluated by applying it to the generic satellite shown in Fig. 1 The finite
element model is comprised of 1191 nodes totaling 7146 degrees of freedom. The target modes chosen for this study are
the first 18 elastic modes listed in Table 2; the system’s six rigid body modes are not considered.

3.2. Sensor locations for satellite model

The sensor locations for the Static and IRS TAMS were found using the modal kinetic energy method. One would need
about six-hundred sensors to capture 90% of the satellite’s kinetic energy. This number of sensors would not be feasible in a
real test, so the modal kinetic energy calculation was performed for each target mode independently and the six degrees of
freedom with the largest kinetic energy were selected for each target mode. Only translational degrees of freedom were
considered in this calculation. It was also discovered that the lumped masses had to be instrumented to provide an
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Fig. 1. Generic Satellite with 7146 degrees of freedom.

Fig. 2. Static/IRS (a), Modal EFI (b) and Modal Condition Number TAM (c) sensor locations.
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accurate Static TAM because they represent such a large portion of the mass of the structure. Therefore, these lumped
masses were manually included in the KE sensor set used for the Static TAM. This resulted in a sensor set with 108 sensors
to capture the 18 target modes. The Static/IRS TAM sensor locations, found using the KE method are shown in Fig. 2. Each
diamond represents a sensor in the X, Y, or Z direction, or a combination of the three.

The Modal TAM EfI and C# sensor set locations are also shown in Fig. 2. Effective independence favors the edges of
the satellite, and does not place any sensors on the satellite core. The C# sensor placement approach was initiated with a set
of 26 sensors on the edges of the PV arrays and reflectors that were chosen to allow one to easily visualize the motion of
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the satellite. The C# algorithm was then used to augment this set; the algorithm primarily selected additional sensors on the
satellite core.

In order to examine Gordis’ theory that the o-set dynamics determine TAM sensitivity [16], the a-set degrees of
freedom, or sensor locations, determined using both the kinetic energy and Effective Independence sensor placement
techniques, were constrained and the modes of the resulting constrained systems were computed. Table 1 lists the natural
frequencies of the target modes of the actual system, the natural frequencies of the system with the sensor (a-set) DOF for
the Static/IRS TAMs constrained, and those with the Modal EfI TAM sensors constrained. The lowest natural frequency
of the system with the Static/IRS sensor locations constrained is 5 Hz higher than the highest target mode. On the other hand,
the Modal EfI TAM a-set produces modes that are interspersed with the system natural frequencies. According to Gordis’
theory discussed in Section 2.1, one would expect this Modal TAM to be highly sensitive to errors in the test mode shapes.
3.3. Pre-test TAM/FEM correlation results

Each sensor set provided acceptable TAM/FEM correlation when the perfect FEM modes were used. Table 2 displays the
frequency error for the Static and IRS TAMs. The maximum frequency error for the Static TAM is approximately 2.3%, and
the error is even smaller for the IRS TAM. As expected, the Modal TAMs reproduce the natural frequencies of the 18 target
Table 1
System natural frequencies and the natural frequencies when the sensor degrees of freedom (a-set) are constrained.

System Target Mode Nat.

Freqs. (Hz)

Static/IRS Nat. Freqs. (Hz)

with a-set constrained

Modal EfI Nat. Freqs. (Hz)

with a-set constrained

0.31 16.84 0.37

0.63 16.84 1.18

0.80 17.45 1.88

1.79 17.45 2.65

2.72 17.76 3.19

2.83 17.76 5.91

3.49 19.56 17.35

3.68 19.56 17.35

3.99 23.85 17.61

4.24 25.03 17.64

5.91 27.14 17.76

6.41 27.14 17.76

7.46 31.33 19.33

7.48 31.33 19.35

9.61 31.34 21.52

9.71 31.34 21.52

11.75 35.03 21.92

Table 2
Static and IRS TAM frequency error.

FEM target mode

number

FEM Frequency (Hz) Primary direction Static TAM frequency

error (%)

IRS TAM frequency

error (%)

1 0.31 Z 0.00 0.00

2 0.63 X 0.00 �0.01

3 0.80 Z 0.00 0.00

4 1.79 X and Y 0.00 0.00

5 2.72 Z �0.10 0.00

6 2.83 Z �0.11 0.00

7 3.49 Z �0.15 0.00

8 3.68 Z �0.17 0.00

9 3.99 Z �0.43 0.00

10 4.24 Z �0.37 0.00

11 5.91 Y �0.09 0.00

12 6.41 Y �0.11 0.00

13 7.46 Z �1.50 0.00

14 7.48 Z �1.51 0.00

15 9.61 Z �2.23 0.00

16 9.71 Z �2.31 0.00

17 11.75 Z �0.16 0.00

18 11.75 Z �0.16 0.00
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modes perfectly, and result in perfect orthogonality, so they are not included in Table 2. Fig. 3 displays the off-diagonal
terms in the orthogonality matrix for the Static TAM. The maximum off-diagonal orthogonality and cross-orthogonality
values for the Static TAM were 0.05 and 0.031, respectively, while the corresponding values for the IRS TAM were all less
than 0.01.

4. Probabilistic study of test-analysis correlation for generic satellite model

4.1. Noise model

In practice, model updating and validation are complicated by the fact that experimental measurements are
contaminated with both random noise and systematic errors. Some sources of measurement error include: errors in the
positioning and alignment of the sensors, imperfect modal parameter extraction, sensor calibration inaccuracy, cross-axis
sensitivity and electrical noise. These errors have not all been thoroughly quantified in the literature, yet there is increasing
interest in doing so [19]. For example, a number of recent works have sought to estimate the variance of the modal
parameters estimated by state of the art modal parameter estimation routines [20–22].

For the present study, experimentally measured mode shapes were simulated by adding uniformly distributed noise to
each finite element mode shape. The simulated noise was created by adding a vector of uniformly distributed random
numbers to each mode shape, scaled to 2% of the maximum value of that mode shape. This noise model was used because
it assures that the noise on the mode shapes is bounded, but it results in the maximum entropy for a given set of bounds.
Specifically, the rth simulated test mode vector was,

utest;r ¼uFEM;rþnr (15)

nr ¼ creur (16)

where utest;r , FEM target mode shape with added noise; uFEM;r , FEM target mode shape; nr , vector of noise added to FEM
target mode shape; e, noise level, in this study e=0.02; cr, scaling factor, cr ¼maxðuFEM;rÞ; ur , vector of independent
uniformly distributed random numbers between �1 and 1.

The actual noise profile obtained in a real experiment is much more complicated than that represented here, yet one
would expect that the magnitude of the uncertainty in each element of an experimentally measured mode shape may be
even greater than 2%. For example, accelerometer calibration factors are typically reported with a 95% confidence interval
of 74%, so typical uncertainty due to calibration alone can be greater than the 2% uncertainty used here.

4.2. Results

The test-orthogonality, O, between the noise-contaminated mode shapes, was computed using each of the TAM mass
matrices. The result found using the Static TAM mass matrix is displayed in Fig. 4 for one realization of the noise model.
Comparing this with the orthogonality matrix computed using perfect mode shapes in Fig. 3, we observe that almost all of
the off-diagonal terms have increased and a few exceed the US Air Force test-orthogonality criteria of Oijo0.1, iaj. This
result represents the orthogonality matrix that might be obtained from a single test due to random test errors. The result
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obtained in a given test depends on the specific value of the noise obtained in each mode shape coefficient, so one might
pass or fail to pass the test-exit criteria, depending on the particular pattern of errors in the test mode shapes.

Because the orthogonality is a random variable, it must be described statistically. Perhaps the best way to do this is to
compute the probability of passing or failing the orthogonality criteria given the assumed noise model. In order to do this, a
Monte Carlo Simulation (MCS) was performed. The test-orthogonality calculation was repeated for 10,000 random noise
profiles, and the maximum and average off-diagonal terms in the orthogonality computation were stored for each trial.
Fig. 5 shows a histogram of the maximum off-diagonal terms obtained in the MCS. One can observe that the maximum off-
diagonal term exceeds the Air Force validation criteria in most of the trials, so according to that criteria the FEM model
would not be considered valid for most of the trials. A kernel density estimator [23] was used to estimate the probability of
obtaining acceptable orthogonality, which was found to be P(max(Oij)o0.1)=0.003. This means that test personnel
utilizing this TAM would have about a three in one-thousand probability of meeting the test exit criteria, depending on the
specific errors obtained in the set of measured modes, or in other words, depending on random chance. Similar trends were
observed for the cross-orthogonality.

A number of TAMs were studied and probability density functions (PDFs) of the MCS results were estimated for each
using the kernel density estimator in [23]. Fig. 6 shows estimates of the PDFs of the maximum off-diagonal term in the test
orthogonality calculation for the Static, IRS, Modal Effective Independence (EfI), Modal Condition Number (C#), and Inverse
(C#) TAMs. As expected, the PDFs show that the probability of obtaining a maximum off-diagonal term of zero is small,
because that requires that all of the off-diagonal terms be zero simultaneously. The probability of obtaining a passing
maximum off-diagonal value (i.e. less than 0.1) is quite small for both the Static and IRS TAMs, so these TAMs would almost
always erroneously indicate that the model is not correlated. On the other hand, the test mode shapes satisfy the
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Fig. 6. Estimated probability density functions of maximum off-diagonal term in test-orthogonality matrix for Static, EFI Modal, Condition Number

Modal, and Condition Number Inverse TAMs for the satellite system presented in Section 3.1.

Table 3
Test-orthogonality statistics for various TAMs and sensor placement schemes.

Maximum

orthogonality off-diagonal

Average

orthogonality off-diagonal

Condition

number of fa

Mean STD Mean STD

Static 0.191 0.043 0.029 2.9E�03 14.446

IRS 0.758 0.069 0.244 2.8E�02 14.446

Modal EfI 0.060 0.017 0.008 7.0E�04 16.227

Modal on Static

TAM Sensor Set 0.108 0.024 0.016 1.6E�03 14.446

Modal C# TAM Starting with Visualization Set (Fig. 6) 0.055 0.011 0.010 9.0E�04 3.759

Modal C# TAM Starting with 3 sensors with largest EfI 0.055 0.010 0.011 7.6E�04 6.317

Modal C# TAM Starting with 15 lumped masses 0.032 0.005 0.008 5.2E�04 2.334
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orthogonality criteria most of the time when the Modal TAM is used. The Modal TAM gives similar results whether
effective independence or the condition number approach is used for sensor placement. The PDF for the Inverse C# TAM
overlays that of the Modal C# TAM, indicating that the two have similar sensitivity for this problem. One should bear in
mind that the PDFs presented were estimated from the results of the Monte Carlo simulation, so they are not exact, but
should be quite accurate for such a large number of MCS samples.

The MCS data is displayed numerically in Table 3, which lists the mean and standard deviation over the 10,000 MCS
trials of the maximum off-diagonal terms for each TAM. (The mean of the maximum off-diagonal term corresponds
to the centroid of the PDFs shown in Fig. 6.) PDFs of the average off-diagonal term were not shown graphically,
but their mean and standard deviations are also given in Table 3. Comparing the statistics of the maximum and average off-
diagonal terms, one finds that the average terms are an order of magnitude lower than the maximum terms. This was
also observed in the individual noise-contaminated orthogonality results, one of which was shown in Fig. 4.
Further investigation revealed that certain modes were often responsible for the large maximum off-diagonal terms.
The most common offender was the coupling between modes 3 and 14, which also corresponds to the largest off-diagonal
term in Fig. 4. Mode 3 involves anti-symmetric bending in the Z-direction; mode 14 primarily involves motion of the
reflectors.

The statistics in Table 3 can be used to compare the different TAMs for this system. The ideal TAM is characterized by a
low mean value, which indicates that the maximum or average orthogonality is small. The standard deviation should also
be small, indicating that similar orthogonality results would be obtained for any realization of the random noise model.
The results in Table 3 indicate the Modal TAM is clearly the least sensitive to errors for this system while the IRS TAM is the
most sensitive. The orthogonality of the Modal TAM was found on two additional sensor sets, both of which were created
using the Condition number algorithm. The first sensor set was obtained by starting with the 3 sensors possessing the
highest effective independence, while the second started with the 15 lumped masses on the core of the satellite. The
C# TAM discussed up until this point, and shown in Fig. 6, was created by starting with a 26 sensor visualization set, as
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described in Section 3.2. These results show that the condition number sensor placement technique does generally result
in a very robust TAM; all three TAMs based on the C# sensors passed the orthogonality criteria most of the time, but the
results do show that the sensor set found by the C# algorithm depends heavily on the initial sensor set. The condition
numbers shown in the table reveal that TAM robustness generally increased as the condition number decreased, but there
are exceptions. For example, the IRS TAM had a slightly lower condition number than the Modal EfI TAM, yet it was much
more sensitive to mode shape errors than the Modal EfI TAM. On the other hand, the most robust TAM in terms of the
maximum off-diagonal term was a Modal C# TAM, and it had the smallest condition number of those investigated.

The method described in Section 2.2, which predicts the standard deviation of each term in the test orthogonality
matrix, was applied to each of the TAMs used in this study. Note that the method in Section 2.2 predicts the standard
deviation of a single off-diagonal term in the orthogonality matrix prior to any other processing. In contrast, the standard
deviations listed in Table 3 were obtained by first finding the maximum or average of the absolute value of the
orthogonality over all of the sensor locations and then computing the sample standard deviation of these quantities over
10,000 MCS trials. A more detailed analysis than that presented in Section 2.2, including the correlation between each term
in the test-orthogonality matrix, would be required to predict the statistics shown in Table 3, so the standard deviation
predicted by Eq. (14) is compared directly with the standard deviation computed from the MCS results for each of the
terms in the test-orthogonality matrix. Table 4 shows this comparison, but for brevity the standard deviations are only
compared for ijth element of the orthogonality matrix, where i and j are the indices of the element in the test-orthogonality
with the largest standard deviation. The percent difference between the two is also shown. The analytical method based on
Eq. (14) predicts the standard deviation very precisely for all of the TAMs except the Static and IRS TAMs.

Mode 3 was often coupled to other modes in the orthogonality calculation. Fig. 7 shows the shape of that mode, and the
shape obtained after contaminating the mode shape at the sensor locations with simulated errors as discussed previously,
and then expanding the shape to all of the nodes in the FEA model. Both the Static TAM and the Modal EfI TAM
Table 4
Test-orthogonality: predicted and actual standard deviations of Oij.

TAM Pred. sij MCS sij % Error i j

Modal EfI 0.038 0.039 0.7 14 4

Static TAM 0.149 0.132 �11.5 3 14

Modal on Static

TAM Sensor Set 0.075 0.071 �5.6 14 3

Modal C# TAM Starting with Visualization Set (Fig. 6) 0.027 0.027 0.4 9 4

IRS 12.490 0.418 �96.7 14 13

Fig. 7. Analytical mode shape 3 (a), noisy mode shape expanded using Modal EFI TAM (b), and noisy mode shape expanded using Static TAM (c).
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Fig. 8. Estimated probability density functions of maximum off-diagonal term in test-orthogonality matrix for Static, EfI Modal TAM and Modal TAM

created using the Static TAM sensor locations.
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transformation matrices were used in the expansion. The Static TAM produces artificially jagged reflector motion at many
of the o-set degrees of freedom, indicating that it is sensitive to measurement noise. On the other hand, the modal TAM
transformation gives a very good approximation of the o-set motion in spite of the noise on the a-set measurements.

As noted previously, different sensor placement techniques have been developed for use with the different TAM
methods. The importance of the sensor locations was studied by creating another Modal TAM using the sensor locations
that were optimized for the Static TAM. As noted previously, many of the previous comparisons of the Static and Modal
TAMs have created both on the same sensor set, usually a sensor set that was optimized for the Static TAM. The PDF of the
maximum off-diagonal term for this sub-optimal Modal TAM is shown in Fig. 8. The corresponding result for the previously
described Static and Modal EfI TAMs are repeated for comparison. The Modal TAM is much more sensitive to mode s
hape errors when implemented using the Static TAM sensor locations, although in this case it is still less sensitive than the
Static TAM.
4.3. Discussion

It was noted that the US Air Force orthogonality criterion would have a small probability of being satisfied using either
the Static or IRS TAMs for this system and number of sensors. This is of concern because the simulated experimental mode
shapes are merely noise contaminated copies of the true mode shapes, so it would be a mistake to update the finite element
model to better correlate with these mode shapes, but the orthogonality criteria would most likely indicate that this is
necessary when these TAMs are used. Of course, the probability of passing is heavily dependent on the noise model. The
noise model considered here corrupts the mode shapes at points with small motion most severely. This is often observed
experimentally so it is not physically unrealistic, but it may explain the high sensitivity for this satellite whose massive core
moved little. A multiplicative noise model was also considered, in which each element of each mode shape was
contaminated by no more than 2% of its actual value. In that case the PDFs of the maximum off-diagonal term shifted left so
that they were usually less than 0.1 for the Static TAM and all of the Modal TAMs, but the rankings between the methods
were essentially the same. Likewise, with 5% uniform, multiplicative noise all of the TAMs pass the orthogonality criterion
with high probability except for the Static TAM, which has about a 65% probability of passing. Future works should certainly
seek to develop more accurate noise models, but in any event the procedure developed here can be employed to evaluate
TAM sensitivity, no matter which noise model is considered to be most realistic for a particular scenario.

In Table 4, the standard deviations obtained from the Monte Carlo simulation were compared with those predicted
using the formula developed in Section 2.2. It was noted that the formula did not agree very well with the MCS results for
the Static and IRS TAMs. However, this discrepancy can be explained by the fact that when performing the MCS, the noise
contaminated eigenvectors were re-normalized to make the diagonal terms of the test orthogonality unity, as is commonly
done in practice. This renormalization was not considered in the analytical sensitivity analysis. The Static and IRS
TAMS were very sensitive, so this normalization had a significant effect for them, while the diagonal terms for the modal
TAMs were always near one, so the normalization did not change the noise level for those TAMs. It is also worth noting that
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the predicted standard deviations in Table 4 follow the same rankings as the means of the maximum off diagonal term in
Table 3, suggesting that Eq. (14) can be used to rank the TAMs or to develop a more robust sensor placement technique.

5. Conclusions

This work presented a stochastic framework that can be used to rigorously characterize the sensitivity of a test-analysis
model to errors in the test mode shapes. Mode shape errors may arise due to imperfections in modal parameter extraction,
sensor calibration errors, measurement noise, accelerometer cross-axis sensitivity, etcy. The analysis presented in Section
2.2 revealed that each term in the orthogonality matrix will tend toward a Gaussian distribution if the mode shape errors
are independent and identically distributed, and those ideas were used to develop a metric that relates to the sensitivity of
a TAM to mode shape errors. These ideas were validated using simulated measurements from a satellite. Errors in the test
mode shapes were modeled as uniformly distributed random noise scaled to a small fraction of the maximum value of each
mode shape. The system studied here exhibited considerable sensitivity for the number of target modes and sensors
selected, which would cause the Static and IRS TAMs to have a small probability of passing the test-orthogonality criteria,
even though the test mode shapes were contaminated with a relatively small level of noise. The sensitivity of the TAMs to
the sensor placement technique was also explored, and it was observed that a Modal TAM created on the Static TAM sensor
set was twice as sensitive as a Modal TAM created using Effective Independence to place sensors. A new sensor placement
technique, dubbed the Condition number algorithm, was presented and found to reduce the sensitivity of the Modal TAM
to mode shape errors for the satellite system studied here.

While only one system was considered here, the procedure developed here can be applied to virtually any system. One
could also use this approach to define the criteria (e.g. number of sensors or target modes, etcy) under which model
correlation is possible for the TAM of interest and a certain level of sensor noise. One could also develop an improved
sensor placement algorithm based on the analytical orthogonality estimate presented here, which would provide a set of
sensor locations that minimizes the TAM’s sensitivity to errors in the test mode shapes. In doing so, it will be important to
develop an accurate model for the measurement errors, and this will probably not be a trivial task, but considering the
potential magnitude of the problem, it is a task that should certainly be pursued.

This study also investigated Gordis’ theory [16] regarding TAM sensitivity, and demonstrated a case that contradicts the
theory: the Modal TAM was not overly sensitive for this satellite, even though its constrained a-set natural frequencies
were interspersed with the target modes natural frequencies (see Table 1).

The authors would like to emphasize that this study does not purport to determine definitely which TAM is the most
sensitive. The performance of each TAM is probably dependent on the model, the number and character of the target
modes selected, and the sensor locations. However, the approach presented here can be used to study sensitivity and TAM
performance from a probabilistic viewpoint, and it is hoped that these methods will be employed to allow engineers to
make more informed decisions regarding TAM sensitivity.

Appendix A. Review of TAM generation and sensor placement techniques

A.1. Test-analysis models (TAMs)

A.1.1. Static (Guyan) TAM

The Static TAM is the most common model reduction technique and is available in many commercial finite element
codes. The Static TAM neglects the inertia terms and hence removes the dependency on frequency. The resulting static
transformation is thus given by

TS ¼
I

�K�1
oo Koa

" #
(17)

The statically reduced mass and stiffness matrices are then given, respectively, by

~MS ¼ TT
S MTS (18)

~KS ¼ TT
S KTS (19)

Each column of TS represents the elastic deformation of the structure under a unit displacement of the corresponding a-set
degree-of-freedom with all others constrained. These shapes are also referred to as constraint modes.

A.1.2. Improved reduced system (IRS) TAM

The Improved Reduced System (IRS) TAM [9] aims to improve upon the Static TAM by approximating the
neglected inertia terms. The frequency dependent terms in Eq. (5) are approximated using the statically reduced mass
and stiffness matrices.

o2
i fuaig �

~M
�1

S
~KSfuaig (20)
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The IRS transformation matrix can be written as the Static transformation matrix plus a correction term, Ti.

TIRS ¼ TSþTi (21)

Ti ¼�
0 0

0 �K�1
oo

" #
Maa Mao

Moa Moo

" #
I

�K�1
oo Koa

" #
~M
�1

S
~KS (22)

The reduced mass and stiffness matrices, ~MIRS and ~KIRS, are computed as in Eqs. (18) and (19).

A.1.3. Modal TAM

There are circumstances in which the Static TAM fails to accurately represent the dynamics of the full system because it
neglects the mass associated with the o-set degrees of freedom. For instance, a solid rocket motor application [5] contained
modes that were dominated by massive and soft propellant. The Static TAM neglected terms that were significant to the
analysis and thus did not provide a good representation of the system. The modal TAM was developed to resolve this issue.
The method uses the modal expansion equation for the target modes

x¼uq (23)

where u represents the target modes, and q represents the generalized modal coordinates. This equation can be
partitioned into the a-set and o-set degrees of freedom,

xa

xo

( )
¼

ua

uo

" #
q (24)

and one can then solve for the modal response vector q,

q¼ ðuT
auaÞ

�1uT
axa (25)

This requires that the matrix ðuT
auaÞ be invertible, so the number of a-set degrees of freedom must be greater than or

equal to the number of target modes and the target modes must be linearly independent when partitioned to the sensor
locations. The transformation matrix for the Modal TAM is found by substituting Eq. (25) into the lower partition of
Eq. (24), resulting in the following.

½TM � ¼
I

uoðuT
auaÞ

�1uT
a

" #
(26)

The reduced mass matrix ~MM is computed in the usual way. The primary advantage of the Modal reduction method is that
it is exact for the modes used in the reduction process, so the TAM/FEM correlation is always perfect.

A.1.4. Inverse TAM

The Inverse TAM was developed by Mayes during the course of this work, and is based upon the same principles as the
Modal TAM. One advantage of the inverse TAM is that it can be created from the mode shapes directly, without the finite
element mass matrix; this can greatly reduce the computational expense required to find an optimum sensor set. The
Inverse TAM is derived from the orthogonality property of mass normalized mode shapes

uT
a
~MIMua ¼ I (27)

where ua represents the target mode shapes partitioned to the sensor locations and ~MIM is the reduced Inverse TAM mass
matrix. The Inverse TAM mass matrix is found by solving Eq. (27). Typically, ua is not a square matrix, so the pseudoinverse
is employed. The resulting expression for ~MIM is

~MIM ¼ ðuT
aÞ
þ
ðuaÞ

þ (28)

where ( )+ denotes the Moore–Penrose pseudoinverse. The reduced mass matrix found using Eq. (28) is not full rank
because there are generally more sensors than modes, but the method can be modified to create a full-rank TAM mass
matrix if desired.

A.2. Sensor placement algorithms

Three techniques are used to generate sensor locations in this work: a modified version of modal kinetic energy (Section
A.2.1), effective independence (Section A.2.2) and a new method (Section A.2.3) that seeks to minimize the condition
number of the a-set modal matrix. The modal kinetic energy method is best suited for the Static and IRS TAMs, while the
other methods are best suited for the Modal TAM and Inverse TAMs.

A.2.1. Modified modal kinetic energy (KE)

Modal kinetic energy ranks the dynamic importance of each FEM degree of freedom based on a combination of mass
and modal displacement. Assuming that the target modes are mass normalized, the fractional contribution of the ith
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candidate sensor to the jth modal kinetic energy is given by

Tij ¼fijMiuj (29)

where fij, the ith row of the jth target FEM mode shape Mi the ith row of the FEM mass matrix uj the jth target
mode vector.

The average modal kinetic energy for each DOF is computed by forming the matrix T and averaging each row (over all
the target modes). In practice, the DOF are typically ranked, and the most important ones retained such that approximately
90% of the modal kinetic energy is captured by the sensor set.

A.2.2. Effective/Independence (EfI)

The effective independence algorithm aims to place the sensors such that the target modes are as linearly independent
as possible, which is required for the Modal TAM. The sensor placement process begins by designating a large set of
candidate sensor locations from which the smaller final sensor configuration is selected. There are two approaches that can
be taken. In its original form, the effective independence method iteratively reduces the large candidate set down to the
desired number of sensor locations [24]. In its most recent form [25], the method starts with a small initial set of sensors
and expands it to the desired number. For this work, the original form of the algorithm was used. The candidate sensor set
included all translational degrees of freedom. Kammer [24] suggested that optimal sensor placement is achieved when the
determinant of the Fisher Information Matrix Q is maximized, where

Q ¼uT
aua (30)

and ua is the target mode shape matrix partitioned to the sensor degrees of freedom. Maximizing the information matrix
determinant will maximize the spatial independence of the target mode partitions. It will also maximize the signal
strength of the target modal responses in the sensor output, which is very desirable in the presence of noise. The effective
independence of the ith degree of freedom is given by

EDi ¼ ðuaÞiQ
�1
ðuaÞ

T
i (31)

0:0rEDir1:0 (32)

where ðuaÞiis the ith row of the target mode partition matrix, which is associated with the ith candidate sensor location.
A value of zero indicates that the ith sensor contributes nothing to the linear independence of the target modes or even
their observability, and a value of 1.0 indicates that the corresponding sensor is absolutely vital to the independence of the
target modes and thus cannot be deleted from the candidate set.

A.2.3. Condition number sensor selection (C#)

The modal filtering process upon which the Modal TAM is based depends upon the mode shape matrix for the a-set
degrees of freedom, ðuT

auaÞ, being invertible. If ua has a large condition number, then high sensitivity may be encountered
when attempting to reconstruct the response at the omitted degrees of freedom from the response at the a-set degrees of
freedom. Mayes et al. [26] proposed an algorithm that is here named the condition number sensor placement technique
that places sensors to minimize the condition number of ua. One would hope that this would minimize the sensitivity of
the Modal TAM to errors in the measurements at the a-set degrees of freedom. Mayes suggested the following approach to
obtain a sensor set that minimizes the condition number of ua. One begins with an initial sensor set, typically a
visualization set, of sensors that must be included in the test. Each of the other sensors is then considered one at time (or
triax by triax), and the condition number of the mode shape matrix with that sensor included is computed and stored. The
process is repeated for all of the candidate sensors, and the sensor that reduces the condition number of the mode shape
matrix the most is retained. The process can then be repeated to add another sensor or group of sensors until the desired
number of sensors is reached, or until the condition number ceases to decrease significantly. Although this process of
locally-optimal steps does not guarantee that a global optimum sensor set is obtained, the method has proven very
effective; Mayes has used this criterion to optimize sensor placement in another work [26], as well as in a few other
unpublished applications. This sensor placement strategy, herein denoted the C# method, can be used to construct both
Modal and Inverse TAMs.
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